

basic education Department: Basic Education REPUBLIC OF SOUTH AFRICA

Term 3 Topics

These are the major term 3 topics as listed in the Grade 10 Physical Sciences <u>ATP document for 2023/2024</u>.

Remember: your school may do topics in a different order or in different terms.

Topic	Physics or Chemistry
<u>Quantitative aspects of</u> <u>chemical change</u>	Chemistry
Vectors and scalars	Physics
<u>Motion in one dimension</u> (<u>mechanics)</u>	Physics
<u>Equations and graphs of</u> <u>motion</u>	Physics
<u>Energy</u>	Physics

QUANTITATIVE ASPECTS OF CHEMICAL CHANGE

SUB-TOPIC	FormulaE/things To know	
Define and calculate number of moles. Calculate Mass, molar mass, number of particles, compounds, atoms	$ \begin{array}{l} \Omega = \frac{m}{M} \\ \Omega = \frac{N}{N_A} \end{array} $	
State Avogadro's law and colculate moles and volume using molar gas at STP	$M = \frac{V}{V_{m}}$	
Define and calculate concentration	$C = \frac{n}{v}$	
Determine percentage composition of an element in a compound	% element = <u>mass of element</u> X 100 <u>mass of</u> <u>compound</u>	
Define and determine the empirical formula from 7. composition.		
Define water of crystallisation and determine number of moles of water crystallisation.		
Perform stoichiometric calculations based on balanced equations (mass, concentration, volume)		
Determine theoretical yield and percentage yield	X yield = <u>actual yield</u> X 100 theoretical yield	

DATA SHEET FOR

QUANTITATIVE ASPECTS OF CHEMICAL

VECTORS & SCALARS

SUB-TOPIC	FormulaE/things To know	
List examples of vectors vs. scalars Understand difference		
How to represent Vectors	with an arrow	
Equality of vectors, negative vectors and addition of vectors		
Define resultant vector and calculate resultant vector using vector addition (sum of vectors)	Choose ① direction e.g. Fnet=F1 + F2 + F3	
Head-to-tail method to determine resultant vector		

MOTION IN ONE DIMENSION

SUB-TOPIC	FormulaE/things To know	
Describe concepts: Frame OF reference, Position relative to reference point	Describe Motion in one dimension	
Define and calculate distance vs. displacement	understand difference	
Define and calculate average speed vs. average velocity	$\frac{Speed}{Speed} = \frac{Distance}{\Delta t} V = \frac{\Delta \infty}{\Delta t}$	
Define and calculate acceleration	$Q = \frac{\Delta V}{\Delta t}$	
Define Instantaneous Velocity and Instantaneous speed		
Describe Motion in words		

SUB-TOPIC	FORMULAE/THINGS TO KNOW	
Draw the following graphs: - position vs. time - velocity vs. time - Acceleration vs. time	time (s)	
Describe the motion of an Object when given the above graphs		
Calculate displacement by working out the area under a velocity vs time graph	VUSC QICA (n.s') USC QICA formulae time (3)	
Calculate acceleration by working out the gradient of a velocity vs time graph	(m.s ⁻¹) (0;0) (30;10) $M = \frac{y_2 - y_1}{x_2 - x_1}$ time (s)	
Use equations of motion to solve problems involving motion in the horizontal plane	$V_{f} = V_{i} + Q \Delta t$ $V_{f}^{2} = V_{i}^{2} + 2Q \Delta x$ $\Delta \infty = V_{i} \Delta t + \frac{1}{2} Q \Delta t^{2}$ $\Delta \infty = \left(\frac{V_{i} + V_{f}}{z}\right) \Delta t$	
Solve problems for the Motion of a Vehicle including safety issues e.g. How speed and stopping distance are related.	* Use above equations * Draw pictures to help	

DATA SHEET FOR

MOTION IN ONE DIMENSION (MECHANICS)

Constants:

Formulae

Equations of motion:

$$V_F = V_i + Q \Delta t$$

$$V_F^2 = V_i^2 + 20\Delta C$$

$$\Delta \infty = Vi \Delta t + \frac{1}{2} \alpha \Delta t^{2}$$

$$\Delta \infty = \left(\frac{V_i + V_f}{2}\right)$$

 -	,)

ENERGY

SUB-TOPIC	FormulaE/things To know	K
Define gravitational potential energy and do calculations	Ep = mgh	
Define kinetic energy and do calculations	$E_{k} = \frac{1}{2} M V^{2}$	
Calculate mechanical energy	Emech=Ep+Er	
Understand the principle of conservation of mechanical energy and use in calculations	Emecha = EmechB Mgha + ±MVi²= Mgho+±MVf	

DATA SHEET FOR ENERGY $E_{K} = \frac{1}{2} M V^{2} \text{ or } K = \frac{1}{2} M V^{2}$

 $E_p = mgh$ or U = mgh

$$E \operatorname{mech}_{A} = E \operatorname{mech}_{B}$$

$$\frac{1}{2} \operatorname{mV_{i}}^{2} + \operatorname{mgh}_{A} = \frac{1}{2} \operatorname{mV_{F}}^{2} + \operatorname{mgh}_{B}$$

$$g = 9,8 \text{ m} \cdot \text{s}^{-2}$$

Summary of topics compiled by Miss Martins.

Qualified Physical Sciences and Maths teacher.

Information obtained from the 2023/2024 annual teaching plans accessed at: https://www.education.gov.za/C

urriculum/NationalCurriculumSt atementsGradesR-12/2023ATPsFET.aspx

